
Download free eBooks at bookboon.com

Prolog Techniques

37

Difference Lists

Chapter 2

Difference Lists

Owing to the availability of unification in Prolog, there is a useful technique that allows predicates involving
certain list operations to be implemented very efficiently. Because at the conceptual level the technique appears
to be manipulating ’differences of lists’, it is known as the Difference List Technique.

2.1 Implementations of List Concatenation

Suppose we want to concatenate the two lists [a,b,c] and [d,e] to give us the new list [a,b,c,d,e]; in other
words, we want to append the list [d,e] to the list [a,b,c]. We can do this by the built-in predicate append/3
as follows:

?- append([a,b,c],[d,e],L).

L = [a, b, c, d, e]

We use Prolog’s listing/1 to display the definition of append/3 :

?- listing(append/3).

append([], A, A).

append([A|B], C, [A|D]) :- append(B, C, D).

Due to its recursive definition, append/3 will be invoked four times when running our example. In general, the
depth of the proof tree will be proportional to the length of the list in the first argument.

We want to explore a computationally more economical approach to the problem of list concatenation. Let
us place in the database the following one-line definition of app dl1/4 :1

app_dl1(A,B,B,A).

Let us carry out the following experiment:

?- app_dl1([a,b,c|X],X,[d,e],Z).

X = [d, e]

Z = [a, b, c, d, e]

1Notation: app stands for append ; dl stands for difference list ; and, 1 indicates that it is the first version – other (improved)
versions soon to follow.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

38

Difference Lists

We have accomplished the intended append operation once again! Let us examine how. The following unifica-
tions have taken place:

1. A is unified with [a,b,c|X].

2. B is unified with X.

3. B is instantiated to [d,e].

4. A is unified with Z.

It is easily seen that the net result of 1–4 is that Z is instantiated to [a,b,c,d,e]. We now define a new
predicate app dl2/3 which is slightly different but still equivalent to app dl1/4 :

app_dl2(A-B,B,A).

(We have chosen, for reasons to be explained soon, to reduce the arity by one by ’merging’ the first two arguments
of app dl1/4 to a hyphenated term.2) Let us see how app dl2/3 behaves:

?- app dl2([a,b,c|X]-X,[d,e],Z).

X = [d, e]

Z = [a, b, c, d, e]

We get the earlier response since the unification steps carried out are as before. The hyphen notation chosen in
app dl2/3 is more customary, however, and it lends itself to the following interpretation.

The term [a,b,c|X]-X is interpreted as a representation of the list [a,b,c] in difference list nota-
tion. The variable X stands for any list. If we unify this term with Y-[], then Y will be instantiated
to [a,b,c] in the usual list notation:

?- [a,b,c|X]-X = Y-[].

X = []

Y = [a, b, c] ;

No

Fig. 2.1 shows how the three conceptual lists are interrelated. It must be emphasized that the above interpre-
tation is a mere working model for what is actually taking place inside Prolog. It turns out, however, that it is
unnecessary to look beyond this conceptual model when working with ’difference lists’. To reinforce this point,
let us consider yet another (the fourth) version of append :

app_dl4(A-B,B-C,A-C).

2We could have chosen some other operator for the term in the first argument of the new predicate; for example, the same
effect is achieved by:

:- op(50,xfx,&).

...

app dl3(A&B,B,A).

The first line – a directive – declares & as an infix operator of precedence 50. In the first argument of app dl3/3 a term A&B replaces
the former A-B. The response will be as before:

?- app dl3([a,b,c|X]&X,[d,e],Z).

X = [d, e]

Z = [a, b, c, d, e]

If the hyphen (-) is chosen to denote difference lists, however, no operator declaration is required since it is a Prolog built-in.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

39

Difference Lists

[a,b,c|X]︷ ︸︸ ︷

︸ ︷︷ ︸
X

︸ ︷︷ ︸
[a,b,c|X] - X

Figure 2.1: Difference List

All arguments of app dl4/3 are difference lists; the earlier query now reads as follows.

?- app_dl4([a,b,c|X]-X,[d,e|Y]-Y,Z1-Z2).

X = [d, e|_G370]

Y = _G370

Z1 = [a, b, c, d, e|_G370] Z2 = _G370 ;

No

The (difference) lists involved here are interrelated as shown in Fig. 2.2. The concatenated list is returned in
the last argument of app dl4/3 in the form of [a, b, c, d, e| G370]- G370.

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Prolog Techniques

40

Difference Lists

(G370 is some internally chosen variable name.) It is easily seen that this is accomplished in one unification

[a,b,c]

A︷ ︸︸ ︷

︸ ︷︷ ︸
B

︸ ︷︷ ︸
A - B

[d,e]

︸ ︷︷ ︸
C

︸ ︷︷ ︸
B - C︸ ︷︷ ︸

A - C = [a,b,c,d,e]

Figure 2.2: List Concatenation by Difference Lists

step irrespective of the lengths of the lists to be concatenated. (Appending difference lists is therefore a constant
time operation.)

We now want to confirm all this experimentally, too. To get started, we need some method for creating
difference lists. One way forward is by means of append/3 . For example, in

?- setof(N,between(1,5, N),Ns), append(Ns,X,L), DL = L-X.

Ns = [1, 2, 3, 4, 5]

X = G468

L = [1, 2, 3, 4, 5| G468]

DL = [1, 2, 3, 4, 5| G468]- G468

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

41

Difference Lists

Built-in Predicates: bagof/3 and setof/3

bagof(+Item,+Goal,?Items) is used to collect in the list Items instances of
Item for which Goal is satisfied. Free variables in Goal will be instantiated
to values for which Goal succeeds. Example: Throw two dice to record all
possible results whose sum does not exceed 3.

?- bagof((D1, D2),(between(1,6, D1), between(1,6, D2),

S is D1 + D2, S =< 3), Pairs).

S = 2 Pairs = [(1, 1)] ;

S = 3 Pairs = [(1, 2), (2, 1)] ;

No

We collect the pairs irrespective of the values taken by S by

?- bagof((D1, D2), S^(between(1,6, D1), between(1,6, D2),

S is D1 + D2, S =< 3), Pairs).

Pairs = [(1, 1), (1, 2), (2, 1)] ;

No

setof/3 is used in a similar fashion except that the entries in Items are sorted

in ascending order and there are no multiple entries in Items .

the list [1,2,3,4,5] is written as a difference list DL using the internal variable G468.

Built-in Predicate: between(+Low,+High,?Value)

On backtracking, the variable Value is unified with all integer values between
Low and High . Example:

?- between(-1,3,V).

V = -1 ;

V = 0 ;

...

We now append to DL the difference list form of [d,e] and also measure the number of inferences by time/1 :

?- setof(N,between(1,5, N),Ns), append(Ns,X,L), DL = L-X,

time(app_dl4(DL,[d,e|Y]-Y,Z1-Z2)).

% 1 inferences in 0.00 seconds (Infinite Lips)

Ns = [1, 2, 3, 4, 5]

X = [d, e| G691]

L = [1, 2, 3, 4, 5, d, e| G691]

DL = [1, 2, 3, 4, 5, d, e| G691]-[d, e| G691]

Y = G691

Z1 = [1, 2, 3, 4, 5, d, e| G691]

Z2 = G691

We need one single inference step only. On the other hand, the corresponding operation with proper lists is
more expensive (6 inferences):

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

42

Difference Lists

?- setof(N,between(1,5, N),Ns), time(append(Ns,[d,e],Z)).

% 6 inferences in 0.00 seconds (Infinite Lips)

Ns = [1, 2, 3, 4, 5]

Z = [1, 2, 3, 4, 5, d, e]

(You may wish to repeat the experiment with larger lists by adjusting the second argument in between/3

above.)

2.2 Implementations of List Flattening

Lists in Prolog can have a nested structure; for example, [a,[b,[],[c,a],e]] is a valid list. The built-in
predicate flatten/2 is designed to ‘linearize’ lists as indicated below:

?- flatten([a,[b,[],[c,a],e]],L).

L = [a, b, c, a, e]

In this section, we are going to explore several implementations of flatten/2 the most efficient of which will
turn out to be the one based on the difference list technique.

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://bookboon.com/
http://bookboon.com/count/advert/bb104666-5119-403f-91c4-a3e7010cbfdf

Download free eBooks at bookboon.com

Prolog Techniques

43

Difference Lists

2.2.1 Project: Lists as Trees & flatten/2

The usual square bracket notation for lists is just a notational convenience. The underlying (but not immediately
obvious) structure is that of a term with the functor ‘. ’ (dot). This may be demonstrated by using the triad
of built-in predicates functor/3 , arg/3 and=../2 3. For example,

?- functor([a,b,c],F,A).

F = ’.’

A = 2

shows that the list [a,b,c] (as any list) is represented as a term with arity 2 and functor ‘.’. We may find the
values of the term’s first and second argument respectively by

?- arg(1,[a,b,c],A).

A = a

and

?- arg(2,[a,b,c],A).

A = [b, c]

The same may be gleaned from using univ :

?- [a,b,c] =.. L.

L = [’.’, a, [b, c]]

Finally, we may even use the dot-notation when working with lists; for example, [b,c] may be appended to
[a] by

?- append(.(a,[]),.(b,.(c,[])),L).

L = [a, b, c]

Even though lists are not written in practice in this way (since the square bracket notation is more suited
to human use), the dot-notation is useful for representing the structure of lists (and that of nested lists in
particular) as a tree of terms. As an example, the tree representation of the list [a,[b,[],[c,a],e]] is shown
in Fig. 2.3. The following is easily observed:

• The flattened list [a,b,c,a,e] may be formed from the tree representation of [a,[b,[],[c,a],e]] by
visiting all leaf terms in turn in a counter-clockwise direction and by collecting those leaves from left-hand
branches which are not the empty list [] .

This process will flatten any list. Exercises 2.1– 2.3 below elaborate on this idea, leading to an implementation
of flatten/2 .

We can easily convert from the dot-notation to the square bracket notation; for example,

?- L = .(a, .(.(b, .([], .(.(c, .(a, [])), .(e, [])))), [])).

L = [a, [b, [], [c, a], e]]

The reverse process has to be programmed.
Exercise 2.1. Define a predicate sharp/2 for converting lists into terms with functor #/2 as exemplified

by the following query.4

3This is an infix predicate and is called univ.
4Ideally, we would like to have a predicate for converting lists in the square bracket notation to a (possibly nested) term with

functor ’. ’. However, this is not immediately achievable since as soon as Prolog sees a term whose functor is ’. ’ it will automatically
display it in the square bracket notation.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

44

Difference Lists

a

b

[]

c

a []

�
�

�

�
�
�

•

�
�

�
�

�
�
�

•

e []

�
�

�

�
�
�

•

�
�

�
�

������

•

����������

	
	
	

•

�
�
�

•

���������������

�
�
�

•

Figure 2.3: Tree Representation of [a,[b,[],[c,a],e]]

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

Download free eBooks at bookboon.com

Prolog Techniques

45

Difference Lists

?- sharp([a,[b,[],[c,a],e]],S).

S = #(a, #(#(b, #([], #(#(c, #(a, [])), #(e, [])))), []))

�

Hint. The definition should be recursive and the ‘boundary case’ may be verified by using the built-in predicate
proper list/1 .

If we now had a predicate lf/2 for returning the leaf nodes from the # -tree of a list (as specified earlier),
we could easily implement flatten/2 , as indicated by

?- sharp([a,[b,[],[c,a],e]], S), bagof(L,lf(S, L),Ls).

Ls = [a, b, c, a, e]

Exercise 2.2. Define a predicate lf(+S,-L) which on backtracking unifies L with the left-hand leaves (not
equal to []) of the # -tree S :

?- lf(#(a, #(#(b, #([], #(#(c, #(a, [])), #(e, [])))), [])),L).

L = a ;

L = b ;

L = c ;

L = a ;

L = e ;

No

�

Note. Your implementations of sharp/2 and lf/2 should be able to cope with lists involving variables, too:

?- sharp([a,[Y,[b,X]],c,f(X)],S).

Y = G315

X = G321

S = #(a,#(#(G315,#(#(b,#(G321,[])),[])),#(c,#(f(G321),[]))))

?- sharp([a,[Y,[b, X]],c,f(X)],_S), !, lf(S,Leaf).

Leaf = a ;

Leaf = G435 ;

Leaf = b ;

Leaf = G441 ;

Leaf = c ;

Leaf = f(G441) ;

No

Exercise 2.3. Now define a first version of flatten/2 :

?- flatten 1([a, [b, [], [c, a], e]],L).

L = [a, b, c, a, e]

?- flatten 1([a,[Y,[b,X]],c,f(X)],L).

Y = G339

X = G345

L = [a, G339, b, G345, c, f(G345)]

�

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

46

Difference Lists

As indicated in Exercise 2.1, in the first instance Prolog won’t convert a list to a term whose functor is
the dot; more precisely, such a conversion won’t be visible since Prolog automatically shows lists in the square
bracket notation. There are two ways, however, to instruct the Prolog system to suppress this conversion
automatism.

• The built-in predicate write term/2 may be used to display a term such that any list within it will be
shown in the generic term-representation using the ‘. ’ functor:

?- write term([a,[b,[],fun([c,a]),e]],[ignore ops = true]).

.(a,.(.(b,.([],.(fun(.(c,.(a,[]))),.(e,[])))),[]))

The second argument of write term/2 is a list-of-options where the flag ignore ops is set to true ; the
default is false .

• We may achieve the same effect for the entire interactive session by the built-in predicate set prolog flag/2 ;
this is exemplified below:

?- L = [a, [b, [], fun([c, a]), e]].

L = [a, [b, [], fun([c, a]), e]]

?- set prolog flag(toplevel print options,[ignore ops=true]).

Yes

?- L = [a, [b, [], fun([c, a]), e]].

L = .(a,.(.(b,.([],.(fun(.(c,.(a,[]))),.(e,[])))),[]))

Once it has been set by the user with set prolog flag/2 , the state of ignore ops is checked by the
built-in predicate current prolog flag/2 :

?- current prolog flag(toplevel print options,[ignore ops=V]).

V = true

In the next exercise, you are asked to implement a predicate allowing lists to be shown in the dot-notation.
Exercise 2.4. Based on sharp/2 from Exercise 2.1, define a predicate dot/1 for displaying lists in the

dot-notation as exemplified by the following query.

?- dot([a, [b, [], [c, a], e]]).

.(a, .(.(b, .([], .(.(c, .(a, [])), .(e, [])))), []))

Thus the predicate dot/1 will be something akin to write term/2 (with the flag ignore ops set to true).
However, lists within Prolog terms with other than the dot-functor should be displayed by dot/1 in the square
bracket notation:

?- dot([a, [b, [], fun([c, a]), e]]).

.(a, .(.(b, .([], .(fun([c, a]), .(e, [])))), []))

Hint. Proceed along the following lines.

• Use the built-in predicate term to atom/2 to convert the list in the sharp-notation to an atom.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

47

Difference Lists

Built-in Predicate: term to atom(?Term,?Atom)

The atom Atom corresponds to the term Term . Example:

?- term to atom(fun1(a,fun2(c),d),A).

A = ’fun1(a, fun2(c), d)’

• Convert the atom into a list of one-character atoms by using the built-in predicate atom chars/2 (c.f.
p. 126).

• Define a predicate sharps to dots/2 by the accumulator technique for converting sharps to dots.5 Ex-
ample:

?- sharps_to_dots([#, ’(’, a, ’,’, ’[’, ’]’, ’)’],D).

D = [’.’, ’(’, a, (’,’), ’[’, ’]’, ’)’]

5Alternatively, the built-in function maplist/3 from p. 127 may be used to define sharps to dots/2 .

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

Prolog Techniques

48

Difference Lists

• Finally, concatenate the list of one-character atoms thus obtained to an atom by using concat atom/2

from p. 126. Also show the result.

�

2.2.2 Flattening Lists by append/3

Another implementation6 of flatten/2 , proposed by Clocksin in [1], p. 58, uses the predicate append/3 :

Prolog Code P-2.1: Clocksin’s definition of flatten/2

1 flatten_3([],[]). % clause 1

2 flatten_3([H|T],L1) :- flatten_3(H,L2), % clause 2

3 flatten_3(T,L3), %

4 append(L2,L3,L1). %

5 flatten_3(X,[X]). % clause 3

This definition is easily understood through a declarative reading:

• Clause 1: This is the base case. It says that an empty list is flattened into an empty list.

• Clause 2: This is the recursive step. A list [H|T] (whose head H is possibly a list itself) is flattened in
the following steps.

1. Flatten the head H .

2. Flatten the tail T .

3. Concatenate the latter two flattened lists.

• Clause 3: The flattened version of a term that unifies neither with [] nor with [H|T] is the term itself.
This clause is intended to cater for the case of list entries which are not themselves lists; a ground atom
(i.e. a one without a variable) is an example thereof.

List flattening defined by (P-2.1) works as intended for (nested) lists whose tree representation has leaves
which are ground atoms or are terms with other than the dot functor; for example,

?- flatten_3([a,[b,[f(X,d),[]],[c,f(X),a],e]],L).

X = _G414

L = [a, b, f(_G414, d), c, f(_G414), a, e]

However, lists some of whose leaves are free variables, won’t be correctly flattened by flatten 3/2 :

?- flatten_3([a,[Y,[b,X]],c,f(X)],L).

Y = []

X = []

L = [a, b, c, f([])]

Exercise 2.5. Augment the definition of flatten 3/2 such that it correctly handles also lists involving
free variables. Another (though easy to rectify) shortcoming of flatten 3/2 is that on backtracking it will
return spurious solutions:

6We count this implementation as version 3 as you will find, in connection with the solution of Exercise 2.3, a ‘version 2’ is
discussed in Appendix A.2 on p. 147.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

49

Difference Lists

?- flatten 3([a, [b, [], [c, a], e]],L).

L = [a, b, c, a, e] ;

L = [a, b, c, a, e, []]

Your improved implementation (version 4) should solve also this problem.

�

2.2.3 flatten/2 by the Difference List Technique

(P-2.2) shows a clause-by-clause ‘translation’ of the definition of flatten 3/2 in terms of difference lists ([1],
p. 58).

Prolog Code P-2.2: Difference list based definition of flatten/2

1 flatten_5(L,F) :- flatten_dl(L,F-[]), !. % clause 1

2 %

3 flatten_dl([],L-L). % clause 2

4 flatten_dl([H|T],L1-L3) :- flatten_dl(H,L1-L2), % clause 3

5 flatten_dl(T,L2-L3). %

6 flatten_dl(X,[X|Z]-Z). % clause 4

The append goal does not appear in (P-2.2) as list concatenation is now accomplished by difference lists.
flatten 5/2 will behave identically to flatten 3/2 except that its solution is unique because of the cut (!)
in clause 1.

Exercise 2.6. The predicate flatten 5/2 in (P-2.2) won’t correctly flatten lists involving free variables.
Modify (P-2.2) to resolve this problem.

�

2.2.4 Comparing Different Versions

We have developed several versions of flatten/2 in the previous section and now their relative performance
will be assessed. To do this, we need a way of generating nested lists which are ‘complicated’ enough to cause
a noticeable amount of computing time when flattened. A predicate nested(+Num,-List) will prove useful for
this purpose: given the positive integer Num , List should be unified with a nested list in the following fashion:

?- nested(9,L).

L = [[[[[[[[[1], 2], 3], 4], 5], 6], 7], 8], 9]

Exercise 2.7. Define the predicate nested/2 by the accumulator technique and then use it to time the
performance of the various versions of flatten/2 by the built-in predicate time/1 .

�

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

50

Difference Lists

2.3 Implementations of List Reversal

There are several ways we can define our own version of the built-in predicate reverse/2 . Its first implemen-
tation (P-2.3) uses append/2 .

Prolog Code P-2.3: First implementation of reverse/2

1 reverse_1([],[]). % clause 1

2 reverse_1([H|T],R) :- reverse_1(T,L), % clause 2

3 append(L,[H],R). %

A declarative reading of clause 2 in (P-2.3) is suggested in Fig. 2.4.

H T� �

T H

︸ ︷︷ ︸
L︸ ︷︷ ︸

R

� �
�

Figure 2.4: Declarative Reading of (P-2.3)

Another implementation of list reversal, now by the accumulator technique, is by (P-2.4) (see Example 1.1,
p. 16):

Prolog Code P-2.4: A second implementation of reverse/2

1 reverse([],R,R). % clause 1

2 reverse([H|T],Acc,R) :- reverse(T,[H|Acc],R). % clause 2

3 reverse_2(L,R) :- reverse(L,[],R). % clause 3

(P-2.3) may be rewritten in terms of difference lists as follows:

Prolog Code P-2.5: Definition of reverse/2 by difference lists

1 rev_dl([],L-L). % clause (a1)

2 rev_dl([X],[X|L]-L). % clause (a2)

3 rev_dl([H|T],L1-L3) :- rev_dl(T,L1-L2), % clause (a3)

4 rev_dl([H],L2-L3). %

5 reverse_3(L,R) :- rev_dl(L,R-[]), !.

Notice that clause (a2) in (P-2.5) does not directly correspond to any of the clauses in (P-2.3); it simply defines
the difference list representation of (the reverse of) a list with a single entry.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

51

Difference Lists

2.3.1 Program Transformations

The performance of a predicate with a given definition can sometimes be enhanced by employing certain trans-
formations leading to a new but logically equivalent form. Even though this topic is not directly related to the
difference list technique, it is opportune to address this issue here. Specifically, we are going to demonstrate how
the three clauses (a1)–(a3) in (P-2.5) can be transformed by folding and unfolding into the logically equivalent
clauses (b1)–(b2) in (P-2.6):

Prolog Code P-2.6: Concise definition of rev dl/2

1 rev_dl([],L-L). % clause (b1)

2 rev_dl([H|T],L1-L2) :- rev_dl(T,L1-[H|L2]). % clause (b2)

(For an in-depth exposition of both folding and unfolding, see [9].)

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

Prolog Techniques

52

Difference Lists

Unfolding

Let us assume that we have in our Prolog knowledge base two clauses of the following form:

A : − B1, ..., Bm, C, Bm+1, ..., Bn. (2.1)

C : − D1, ..., Dk. (2.2)

Then the clause

A : − B1, ..., Bm, D1, ..., Dk, Bm+1, ..., Bn. (2.3)

is a logical consequence of (2.1)–(2.2), inferred by an Elementary Unfolding Operation. Equation (2.3) is said
to have been obtained by unfolding (2.1) upon the goal C. We note that,

• The requirement that the head of one clause be identical to one of the goals in the body of another clause
can be relaxed to the two unifying. (This is a mere reflection on Prolog’s inference mechanism.)

• In general, the new clause (2.3) won’t be a replacement for (2.1) since in the database there may be other
clauses whose head is identical to (or unifies with) the goal C in (2.1). To replace a clause like (2.1), we
would have to carry out each and every possible elementary unfolding operation on the goal C in (2.1);
in such a case, a Complete One Step Unfolding (COSU) is said to have been carried out.

• Finally, the two clauses (2.1) and (2.2) need not be distinct; they may be replicas of one and the same
clause from the database. In fact, for a COSU, also such ’self-unfoldings’ have to be considered. (This
may be of interest for recursively defined predicates.)

Let us now turn to our specific example: we want to do a COSU on the call rev dl([H],L2-L3) in clause (a3)
of (P-2.5). We represent the clauses (a1)–(a3) in (P-2.5) equivalently by (P-2.7)

Prolog Code P-2.7: Equivalent form of (a1)–(a3) in (P-2.5)

1 rev_dl([],L-L) :- true.

2 rev_dl([X],[X|L]-L) :- true.

3 rev_dl([U|V],W1-W3) :- rev_dl(V,W1-W2),

4 rev_dl([U],W2-W3).

and then seek to unify in turn the head of each with the term rev dl([H],L2-L3) . This can be done ‘by hand’,
or, more reliably, by using Prolog’s unification mechanism:

?- rev_dl([],L-L) = rev_dl([H],L2-L3).

No

?- rev_dl([X],[X|L]-L) = rev_dl([H],L2-L3).

X = _G372

L = _G376

H = _G372

L2 = [_G372|_G376]

L3 = _G376

Yes

?- rev_dl([U|V],W1-W3) = rev_dl([H],L2-L3).

U = _G372

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

53

Difference Lists

V = []

W1 = _G375

W3 = _G376

H = _G372

L2 = _G375

L3 = _G376

Yes

The first unification attempt fails. The second unification succeeds and gives rise to the clause

rev_dl([_G372|T],L1-_G376) :- rev_dl(T,L1-[_G372|_G376]), true.

The third unification also succeeds, giving rise to the clause

rev_dl([_G372|T],L1-_G376) :- rev_dl(T,L1-_G375),

rev_dl([],_G375-W2),

rev_dl([_G372],W2-_G376).

(This last step is an instance of an elementary unfolding operation involving self-unfolding.) The one step
unfolding operation is now complete and the last two clauses thus obtained may replace clause (a3) in (P-2.5).
The new database is shown in (P-2.8).7

Prolog Code P-2.8: Partially transformed clauses

1 rev_dl([],L-L). % clause (a1)

2 rev_dl([X],[X|L]-L). % clause (a2)

3 rev_dl([H|T],L1-L2) :- rev_dl(T,L1-[H|L2]). % clause (a3.1)

4 rev_dl([H|T],L1-L3) :- rev_dl(T,L1-L2), % clause (a3.2)

5 rev_dl([],L2-W), %

6 rev_dl([H],W-L3). %

As is illustrated here, the new database after unfolding is not smaller than the initial one. We shall, however,
shortly identify the clauses (a2) and (a3.2) in (P-2.8) as redundant.

Clause (a2) in (P-2.8) is redundant for it may be inferred from (a1) and (a3.1) in an elementary unfolding
operation on the call rev dl(T,L1-[H|L2]) in clause (a3.1).8 The requisite unification is

?- rev_dl([],L-L) = rev_dl(T,L1-[H|L2]).

L = [_G360|_G361]

T = []

L1 = [_G360|_G361]

H = _G360

L2 = _G361

Yes

It gives rise to the clause

rev_dl([_G360|[]],[_G360|_G361]-_G361) :- true.

which, after some variable renaming, is recognized as clause (a2) in (P-2.8).
It is seen that sometimes the database may be reduced by showing that one of its clauses can be inferred

from the other ones by unfolding. Here, for a further reduction of the database we need another technique,
called folding.

7Notice that some of the variables are renamed when writing down (P-2.8).
8As before, read clause (a1) in (P-2.8) as rev dl([],L-L):- true.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

54

Difference Lists

Folding

Let us assume that we have two clauses in the Prolog database that are of the form

A : − B1, ..., Bm, C, Bm+1, ..., Bn. (2.4)

D : − C. (2.5)

Let us furthermore assume that (2.5) is the only clause in the database whose head is the term D. Then, if
during the computation it is found that the goal D succeeds, we can infer that also C holds.9 We can therefore
augment the database by the clause

A : − B1, ..., Bm, D, Bm+1, ..., Bn. (2.6)

called the folding of clause (2.4). A more general formulation says that if some term D′ is found to hold which
unifies with D, then

A : − B1, ..., Bm, D′, Bm+1, ..., Bn.

may be inferred in lieu of clause (2.6).
We now want to apply these ideas to eliminate clause (a3.2) in (P-2.8). As a first step, we show that the

clauses

L1 = L2 :- rev_dl([],L1-L2). % clause (c1)

W1 = [E|W2] :- rev_dl([E],W1-W2). % clause (c2)

are a logical consequence of (a1) and (a3.1) in (P-2.8).10

To justify (c1), we observe that

• Clause (a1) is equivalent to

rev_dl([],L1-L2) :- L1 = L2. % clause (d)

• The term rev dl([],L1-L2) does not unify with any of the heads in (a1) and (a3.1) hence we may infer
clause (c1) from clause (d). (This reasoning is identical to that for justifying folding.)

To justify (c2), we observe that

• rev dl([E],W1-W2) will unify with the head of clause (a3.1) only:

?- rev dl([E],W1-W2) = rev dl([H|T],L1-L2).

E = _G372

W1 = _G375

W2 = _G376

H = _G372

T = []

L1 = _G375

L2 = _G376

Yes

9In the absence of clause (2.5), the query ?- not(D). would succeed by the Closed World Assumption which states that the
negation of anything which cannot be inferred from the database is deemed true. Therefore, D can only hold if C holds.

10More precisely, (c1) and (c2) are a consequence of the completion of (a.1) and (a3.1).

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

55

Difference Lists

• We may therefore infer the ‘reverse’ of clause (a3.1) with the above instantiation pattern as

rev_dl([],_G375-[_G372|_G376]) :- rev_dl([_G372|[]],_G375-_G376).

or, in a more readable format,

rev_dl([],W1-[E|W2]) :- rev_dl([E],W1-W2). % clause (e)

• Finally, we use clause (e) to obtain clause (c2) by unfolding on the call
rev dl([],L1-L2) in clause (c1).

To infer now clause (a3.2) from (a1) and (a3.1) we hypothesize the body (i.e. the conjunction of the goals)
of (a3.2):

rev_dl(T,L1-L2), rev_dl([],L2-W), rev_dl([H],W-L3).

We infer by clause (c1) that

L2 = W.

and therefore

rev_dl([H],L2-L3).

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

Download free eBooks at bookboon.com

Prolog Techniques

56

Difference Lists

from which by clause (c2)

L2 = [H|L3].

and therefore

rev_dl(T,L1-[H|L3]) :- true.

Unfold now clause (a3.1) to get

rev_dl([H|T],L1-L3).

which is indeed the head of clause (a3.2).11

An interpretation of clause (b2) in (P-2.6) is shown in Fig. 2.5. It admits the following declarative interpre-

H T� �

T H

L2︷ ︸︸ ︷

︸ ︷︷ ︸
[H|L2]

︸ ︷︷ ︸
L1 - [H|L2]︸ ︷︷ ︸

L1

� �
�

Figure 2.5: Illustrating Clause (b2) in (P-2.6)

tation:

The difference list L1-L2 is the reverse of the list [H|T] if the difference list L1-[H|L2] is the
reverse of T .

(This shows once again that we can think of difference lists as if they were true differences of lists!)
Exercise 2.8. Time the performance of the four versions of reverse/2 and comment on the results. You

should generate long lists (of consecutive integers) by using the built-in predicates between/3 and findall/3 .12

�

Exercise 2.9. Fig. 2.6 is an analogue of Fig. 2.5 for an enhanced implementation of reverse/2 , also based
on the difference list technique.

(a) Give a declarative reading of Fig. 2.6.

(b) Define a new version of reverse/2 based on Fig. 2.6.

(c) Obtain your new version also by unfolding clause (b2).

11The foregoing reasoning is an instance of the application of the Implication Introduction Rule in Propositional Calculus.
12findall/3 is identical to bagof/3 (see p. 41) except that findall/3 will return the empty list and succeed in cases where

bagof/3 fails.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

57

Difference Lists

(d) Assess the new version’s behaviour as in Exercise 2.8.

(e) What would be a further enhancement to this implementation and how could the idea be generalized?

�

E1 E2 T� �

T E2 E1

L2︷ ︸︸ ︷

︸ ︷︷ ︸
[E2,E1|L2]

︸ ︷︷ ︸
L1 - [E2,E1|L2]︸ ︷︷ ︸

L1

� �
�

� �
�

Figure 2.6: Illustrating Exercise 2.9

2.3.2 Difference Lists as Accumulators

Close inspection of clause (b2) in (P-2.6) reveals another interesting feature. If rev dl is interpreted as a
predicate with arity 3 then its third argument may be thought of as an accumulator akin to the second argument
of reverse/3 in (P-2.4), p. 50. The other two arguments also correspond to each other accordingly. This
shows, perhaps surprisingly, that two techniques based on entirely different approaches may result in the same
implementation. (You will find some other examples on the similarity of the two techniques in [16], pp. 243–244.)

2.4 Case Study: Dijkstra’s Dutch Flag Problem

We use Dijkstra’s Dutch Flag Problem (e.g. [16]) to illustrate how a predicate defined in terms of append/3

can be recast to a more efficient form by the difference list technique.
A list of terms of the form col(Object,Colour) is defined by the predicate items/1 where Colour is one

of the Dutch national colours, i.e. red, white or blue.

items([col(sky,blue), col(tomato,red), col(milk,white),

col(blood,red), col(ocean,blue), col(cherry,red),

col(snow,white)]).

We want to define a predicate dijkstra/2 for arranging the items in the order of the Dutch flag’s colours.
Within each colour group, the original order should be retained:

?- items(Items), dijkstra(Items,Grouped).

Grouped = [col(tomato, red), col(blood, red), col(cherry, red),

col(milk, white), col(snow, white), col(sky, blue),

col(ocean, blue)]

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

58

Difference Lists

2.4.1 Basic Implementation Using append/3

The idea for a basic version of dijkstra/2 is as follows. We define three predicates — one for each colour —
for returning the list of items of that particular colour. These lists are then concatenated to a list of grouped
items.

Below is shown the definition of reds(+Items,-Reds) ; the other two predicates are defined in an analogous
manner.

Prolog Code P-2.9: Definition of reds/2

1 reds([],[]). % clause 1

2 reds([col(Object,red)|T],[col(Object,red)|L]) :- reds(T,L). % clause 2

3 reds([col(_,Colour)|T],L) :- Colour \= red, % clause 3

4 reds(T,L). %

(P-2.9) is a straightforward recursive definition supported by the following declarative reading:

• Clause 1: If Items is the empty list then Reds will be empty.

• Clause 2: Assume that the list L comprises all red entries of T . Then, the same relationship holds for the
lists [Item|L] and [Item|T] if Item is red.

• Clause 3: Assume again that the list L comprises all red entries of T . Also assume that Item is not red.
Then, L comprises all red entries of the augmented list [Item|T] .

reds/2 behaves as expected,

?- items(Items), reds(Items,Reds).

Reds = [col(tomato, red), col(blood, red), col(cherry, red)]

dijkstra/2 may now be defined by (P-2.10).

Prolog Code P-2.10: A first definition of dijkstra/2

1 dijkstra(Items,Grouped) :- reds(Items,R),

2 whites(Items,W),

3 blues(Items,B),

4 append(R,W,RandW),

5 append(RandW,B,Grouped).

2.4.2 A More Concise Version

The predicates reds/2 , whites/2 and blues/2 from Sect. 2.4.1 are structurally identical; their structure is
captured by that of colour/3 in (P-2.11).

Prolog Code P-2.11: Definition of colour/3

1 colour(_,[],[]).

2 colour(Clr,[col(Object,Clr)|T],[col(Object,Clr)|L]) :- colour(Clr,T,L).

3 colour(Clr,[col(_,Colour)|T],L) :- Colour \= Clr,

4 colour(Clr,T,L).

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

59

Difference Lists

It is clear that once the first argument of colour/3 is instantiated to a particular colour, it will behave as the
predicate for the corresponding colour; for example,

?- items(Items), colour(red, Items,Reds).

Reds = [col(tomato, red), col(blood, red), col(cherry, red)]

This suggests a second implementation of dijkstra/2 , shown in (P-2.12).

Prolog Code P-2.12: A second definition of dijkstra/2

1 dijkstra(Items,Grouped) :- colour(red,Items,R),

2 colour(white,Items,W),

3 colour(blue,Items,B),

4 append(R,W,RandW),

5 append(RandW,B,Grouped).

2.4.3 Using Difference Lists

As dijkstra/2 uses list concatenation by append/3 , it is a candidate for being recast in terms of difference
lists.

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Download free eBooks at bookboon.com

Prolog Techniques

60

Difference Lists

• First, we define colour dl/3 in (P-2.13) by using difference lists.

Prolog Code P-2.13: Definition of colour dl/3

1 colour_dl(_,[],L-L).

2 colour_dl(Clr,[col(Object,Clr)|T],[col(Object,Clr)|L1]-L2) :-

3 colour_dl(Clr,T,L1-L2).

4 colour_dl(Clr,[col(_,Colour)|T],L1-L2) :-

5 Colour \= Clr,

6 colour_dl(Clr,T,L1-L2).

• Then, we concatenate in (P-2.14) the three lists of groups by dijkstra dl/2 .

Prolog Code P-2.14: Definition of dijkstra dl/2

1 dijkstra_dl(Items,L1-L4) :- colour_dl(red,Items,L1-L2),

2 colour_dl(white,Items,L2-L3),

3 colour_dl(blue,Items,L3-L4).

• Finally, in (P-2.15) the grouped list Grouped (as a true list) is obtained by unifying the difference list
with Grouped-[] .

Prolog Code P-2.15: dijkstra/2 based on difference lists

1 dijkstra(Items,Grouped) :- dijkstra_dl(Items,Grouped-[]).

Exercise 2.10. All versions of dijkstra/2 discussed thus far need three passes through the input list, one
for each colour. This inefficiency is avoided by the version defined by (P-2.16)–(P-2.17).

Prolog Code P-2.16: Definition of colour/4

1 colour([],[],[],[]).

2 colour([col(Object,red)|T],[col(Object,red)|R],W,B) :- colour(T,R,W,B).

3 colour([col(Object,white)|T],R,[col(Object,white)|W],B) :- colour(T,R,W,B).

4 colour([col(Object,blue)|T],R,W,[col(Object,blue)|B]) :- colour(T,R,W,B).

Prolog Code P-2.17: dijkstra/2 based on colour/4

1 dijkstra(Items,Grouped) :- colour(Items,R,W,B),

2 append(R,W,RandW),

3 append(RandW,B,Grouped).

(colour/4 features as an ‘amalgamation’ of the predicates reds/2 , whites/2 and blues/2 from Sect. 2.4.1.)

(a) Rewrite colour/4 and dijkstra/2 (from (P-2.17)) by using difference lists. Compare the performance
of all versions of dijkstra/2 available thus far by using time/1 .

(b) The version of dijkstra/2 from (P-2.17) as well as its difference list based version from (a) will fail if
one of the entries in Items is not coloured red, white or blue. Augment both predicates to avoid failure
for such inputs. (As before, Grouped should comprise exactly the items in the Dutch national colours.)

�

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

61

Difference Lists

2.5 Rotations

2.5.1 Rotating a List

Sometimes it is required to create a new (output) list by rotating some input list. We have met an example
thereof in Sect. 1.6 where in the course of the Perceptron Training Algorithm, the predicate transform/2 ,
defined in (P-1.15), p. 33, subjected some list of P s to a rotation. This meant that if [P|OtherPs] is unified
with the list of training points [p1,p2, · · · ,pN], say, then transform/2 will return in NewPs the ’rotated’
list [p2, · · · ,pN ,p1]. (The list of desired class labels [D|OtherDs] is subjected by transform/2 to the same
transformation.)

In (P-1.15), rotation was achieved by using append/3 . Difference lists offer a constant–time alternative to
accomplish the same (e.g. [1]) if the original list is a difference list; example:

?- [a1,a2,a3,a4|X]-X = [H|Y]-[H|Z], R = Y-Z.

X = [a1|_G397]

H = a1

Y = [a2, a3, a4, a1|_G397]

Z = _G397

R = [a2, a3, a4, a1|_G397]-_G397

Fig. 2.7 spells out how the above result can be modelled in terms of differences of lists.

a1 a2 a3 a4 X

[a1,a2,a3,a4|X]-X︷ ︸︸ ︷
︸ ︷︷ ︸

[H|Y]-[H|Z] [H|Z]︷ ︸︸ ︷
H Z

Y-[H|Z] = [a2,a3,a4]︷ ︸︸ ︷
H Y︸︷︷︸

[a1]

︸ ︷︷ ︸
Y-Z = [a2,a3,a4,a1]︸ ︷︷ ︸

[H|Y]

Figure 2.7: Rotating by Difference Lists

This idea easily carries over to more sophisticated schemes of computation where the result is based on some
input from the ‘front’ being transformed and placed to the ‘back’. For example, the core for computing the
averages of consecutive entries in a list of numbers may look like this:

?- [1,2,3,4|X]-X = [H1,H2|Y]-[Last|Z], Last is (H1 + H2)/2,

R = [H2|Y]-Z.

...

R = [2, 3, 4, 1.5|_G574]-_G574

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

62

Difference Lists

Exercise 2.11. Based on the above query, define averages dl(+DL,-ADL) for computing the pairwise
averages of adjacent numbers in a list of positive integers. Both, DL and ADL are represented in the difference
list format. Example:

?- averages dl([4,8,16,32| X]- X,ADL).

ADL = [6, 12, 24| G426]- G426 ;

No

Outline Idea. A version based on ordinary lists is shown in (P-2.18).

Prolog Code P-2.18: Definition of averages/2

1 averages(L,A) :- aver([-1,1|L],A), !. % clause 1

2 aver([_,0,_|T],T). % clause 2

3 aver(X,Result) :- av_rotate(X,Y), % clause 3

4 aver(Y,Result). %

5 av_rotate([H1,H2|Y],L) :- Last is (H1 + H2)/2, % clause 4

6 append([H2|Y],[Last],L). %

The auxiliary predicate av rotate/2 is the ordinary list based version of the ‘compute-the-average-and-rotate’
function. Let us show an example of how averages/2 will behave:

?- averages([4,8,16,32],A).

A = [6, 12, 24] ;

No

It is seen that the list for which the averages are to be computed is first appended to [-1,1]. This augmented
list is then transformed by repeated application of av rotate/2 (via a recursive call to aver/2) until the zero
(i.e. the average of the first two entries) moves to the second position. The final result is then obtained by
removing the first three entries of the list thus returned. (See also the hand computations in Fig. 2.8.) Rewrite
the above definition in terms of difference lists.

averages([4,8,16,32], A)
1©

��

aver([-1,1,4,8,16,32], A)
3©

�� aver([1,4,8,16,32,0], A)
3©

��

aver([4,8,16,32,0,2.5], A)
3©

�� aver([8,16,32,0,2.5,6], A)
3©

��

aver([16,32,0,2.5,6,12], A)
3©

�� aver([32,0,2.5,6,12,24], A) ��

aver([32,0,2.5 | [6,12,24]], A)
2©

�� A = [6,12,24])
1©

�� success

Figure 2.8: Hand Computations for averages/2

Notes.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

63

Difference Lists

❶ We may use this definition to implement afresh the averaging of ordinary lists of positive integers. We do
this by first converting the original list to a difference list by dl/2 , defined in (P-2.19).

Prolog Code P-2.19: dl/2 for list to difference list

1 dl([],L-L). % clause 1

2 dl([H|T],[H|L1]-L2) :- dl(T,L1-L2). % clause 2

Then, the list of averages may be computed thus.

?- dl([4,8,16,32], DL), averages dl(DL,A-[]).

A = [6, 12, 24] ;

No

❷ The difference list based version is faster than the one using append/3 . Faster still is the predicate defined
by simple recursion in (P-2.20).

http://bookboon.com/
http://bookboon.com/count/advert/7a02d4d2-9105-46a9-9453-a37800b93d7c

Download free eBooks at bookboon.com

Prolog Techniques

64

Difference Lists

Prolog Code P-2.20: averages/2 by recursion

1 averages2([_],[]).

2 averages2([H1,H2|T],[A|AS]) :- A is (H1 + H2) / 2,

3 averages2([H2|T],AS).

�

Exercise 2.12. Give a pictorial illustration of clause 2 of dl/2 in (P-2.19). Based on this illustration, give
it a declarative reading.

�

The term ‘rotation’ is justified by the following consideration. We imagine the list entries to be labels to
movable beads threaded onto a circular wire. Our ‘rotation’ corresponds to each bead moving one position to
the left. The crucial step here is the identification (or ‘glueing together’) of both ends of the list. (See Fig. 2.9.)

�a3

a1

a2

a4

→

←
→

→

Figure 2.9: Rotating a List with Four Entries

2.5.2 The Perceptron Training Algorithm Revisited

As indicated before, there is scope for improving the Prolog implementation of the Perceptron Training Algo-
rithm from Sect. 1.6 by using difference lists. Carrying out the two rotations via difference lists, we now have
a new clause of transform/2 in (P-2.21).13

Prolog Code P-2.21: An additional clause for transform/2

1 transform(in(C,[P|TP1]-[P|TP2],[D|TD1]-[D|TD2],Ws,Acc),

2 in(C,TP1-TP2,TD1-TD2,NewWs,NewAcc)) :-

3 perceptron(C,P,D,Ws,NewWs),

4 NewAcc is Acc + 1.

The stopping criterion, originally implemented by classify all/3 in (P-1.14), p. 33, is also rewritten to acco-
modate difference lists; this is in (P-2.22).

Prolog Code P-2.22: Additional clauses for classify/3

1 classify_all(L-_,_,L1-L1) :- var(L).

2 classify_all([P|TP1]-TP2,Weights,[Class|TC1]-TC2) :-

3 classify(P,Weights,Class), !,

4 classify_all(TP1-TP2,Weights,TC1-TC2).

13See (P-1.15), p. 33, for the original definition of transform/2 .

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

65

Difference Lists

(P-2.21) and (P-2.22) are placed in the file where the earlier definitions are, as all previous definitions should
still apply.14 (The new clauses won’t clash with existing definitions.) To convert the list of training points and
the list of desired class labels to difference lists, we use the predicate dl/2 from Exercise 2.11. With these
additions then, we are now ready to run and confirm the computational advantage of the new version:15

?- ws(Ws), ps(_Ps), ds(_Ds), time(pta(0.25,_Ps,_Ds,Ws,W,801)).

% 41,335 inferences in 0.38 seconds (108776 Lips)

Ws = [-0.51, -0.35, 0.13] W = [3.018, 4.1935, -39.87]

?- ws(Ws), ps(_Ps), ds(_Ds), dl(_Ps,_PsDL), dl(_Ds,_DsDL),

time(pta(0.25,_PsDL,_DsDL,Ws,W,801)).

% 28,519 inferences in 0.28 seconds (101854 Lips)

Ws = [-0.51, -0.35, 0.13] W = [3.018, 4.1935, -39.87]

(We have excluded from the timing the conversions to difference lists by dl/2 as they present a constant
computational overhead whose relative contributions will be negligible as the number of iterations is increased.)

2.5.3 Planar Rotations16

To extend the notion of ‘rotation’ from lists to matrices, we consider list rotations once again. One way to
rotate the list L = [a1, a2, a3, a4] is indicated in Fig. 2.10:

1. Copy L infinitely many times along the line.

2. Shift the frame of L by one cell to the right. The framed entries form the rotated list.

3. Several successive rotations will be achieved by shifting the frame the requisite number of cells to the
right.

· · · a2 a3 a4 a1 a2 a3 a4 a1 a2 a3 a4 a1 · · ·

�

Figure 2.10: The Original List and its Rotated Image

We want to consider the analogous construction in the plane. A two–dimensional rectangular pattern (i.e.
a matrix) of entries is given; this may be, for example, the three by four matrix

A =

⎡
⎣ a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

⎤
⎦ (2.7)

We tile the entire plane with copies of A and shift a three by four frame from A to South–East to obtain the
rotated matrix

A(rot) =

⎡
⎣ a22 a23 a24 a21

a32 a33 a34 a31

a12 a13 a14 a11

⎤
⎦

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

66

Difference Lists

··
·

··
·

··
·

··
·

··
·

··
·

··
·

· · · a34 a31 a32 a33 a34 a31 a32 · · ·

· · · a14 a11 a12 a13 a14 a11 a12 · · ·

· · · a24 a21 a22 a23 a24 a21 a22 · · ·

· · · a34 a31 a32 a33 a34 a31 a32 · · ·

· · · a14 a11 a12 a13 a14 a11 a12 · · ·

· · · a24 a21 a22 a23 a24 a21 a22 · · ·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

�
��

�
��

Figure 2.11: The Original Matrix A and its Rotated Image A(rot)

This is illustrated in Fig. 2.11. (Several such moves may be used for successive rotations.)

The argument to justify the term ‘rotation’ is now more involved. We first identify the two horizontal edges
of the matrix and glue them together. The result is a tube which then is treated as a flexible pipe. Then, both
ends of the pipe are glued together such that the first and last entries of each matrix row meet. What we then
have is a torus covered with the mesh of the matrix entries. Our ‘rotation’ corresponds to each entry moving
to its neighbouring North–Western cell.

Implementation

Initially, a matrix will be represented as a list of its rows which themselves are written as lists. Therefore, for
example, the matrix A in (2.7) may be defined by (P-2.23).

Prolog Code P-2.23: Definition of matrix a/1

1 matrix_a([[a11, a12, a13, a14],

2 [a21, a22, a23, a24],

3 [a31, a32, a33, a34]]).

(This is then a list of lists of Prolog atoms.)

Using Proper Lists. Rotations will be carried out in two stages as indicated in Fig. 2.12. First, in step 1©,
the list representations of rows undergo a rotation each; this is implemented by rot rows/2 in (P-2.24).

14All code pertinent to the Perceptron Training Algorithm is replicated in the file dl.pl.
15A similar result applies when calling pta/6 with a variable in its last argument.
16This section and the next are based on [4]. The author thankfully acknowledges the permission by Elsevier to republish this

material here.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

67

Difference Lists

1©
��

2©
��

[[a11, a12, a13, a14],

[a21, a22, a23, a24],

[a31, a32, a33, a34]]

[[a12, a13, a14, a11],
[a22, a23, a24, a21],
[a32, a33, a34, a31]]

[[a22, a23, a24, a21],

[a32, a33, a34, a31],

[a12, a13, a14, a11]]

Figure 2.12: Hand Computations for Rotation in the Plane

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Prolog Techniques

68

Difference Lists

Prolog Code P-2.24: Definition of rot rows/2

1 rot_rows([],[]). % clause 1

2 rot_rows([[H|T]|Ls],[R|Rs]) :- append(T,[H],R), !, % clause 2

3 rot_rows(Ls,Rs). %

Then, in step 2©, the ‘outside’ list is rotated by the predicate rot matrix/2 in (P-2.25).

Prolog Code P-2.25: Definition of rot matrix/2

1 rot_matrix(M,R) :- rot_rows(M,[H|T]), % clause 1

2 append(T,[H],R). %

The timed rotation of A will look like this:

?- matrix a(A), time(rot matrix(A,R)).

% 20 inferences in 0.00 seconds (Infinite Lips)

A = [[a11,a12,a13,a14], [a21,a22,a23,a24], [a31,a32,a33,a34]]

R = [[a22,a23,a24,a21], [a32,a33,a34,a31], [a12,a13,a14,a11]]

Using Difference Lists. All lists will be replaced by difference lists; in particular, matrices are now difference
lists of difference lists. We need a way of converting the old matrix representation to its new equivalent. This
will be achieved by the predicate dl2(+LOfLs,-DLOfDLs) in (P-2.26).

Prolog Code P-2.26: Definition of dl2/2

1 dl2([],L-L).

2 dl2([H|T],[HDL|L1]-L2) :- dl(H,HDL), !,

3 dl2(T,L1-L2).

Exercise 2.13. Define a predicate show matrix dl/1 for displaying the original matrix rows via the new
difference list representation as shown below.

?- matrix a(A), dl2(A, ADL), show matrix dl(ADL).

[a11, a12, a13, a14] [a21, a22, a23, a24] [a31, a32, a33, a34]

�

The new, difference lists based implementations (P-2.27) and (P-2.28) are obtained by a straightforward
clause by clause ‘translation’ of (P-2.24) and (P-2.25), respectively.

Prolog Code P-2.27: Definition of rot rows dl/2

1 rot_rows_dl(L-_,Y-Y) :- var(L).

2 rot_rows_dl([[H|T1]-[H|T2]|Ls1]-Ls2,[T1-T2|R1]-R2) :-

3 rot_rows_dl(Ls1-Ls2,R1-R2).

Prolog Code P-2.28: Definition of rot matrix dl/2

1 rot_matrix_dl(MDL,T1-T2) :- rot_rows_dl(MDL,[H|T1]-[H|T2]).

The test below confirms the computational advantage of using difference lists.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

69

Difference Lists

?- matrix a(A), dl2(A, DLA), time(rot matrix dl(DLA, DLR)),

show matrix dl(DLR).

% 12 inferences in 0.00 seconds (Infinite Lips)

[a22, a23, a24, a21] [a32, a33, a34, a31] [a12, a13, a14, a11]

Exercise 2.14. Your predicate show matrix dl/1 from Exercise 2.13 will in all likelihood interfere with
predicates invoked after its call. You may find, for example, that you can’t produce the rotated matrix after
you have used show matrix dl/1 for displaying the original matrix:

?- matrix a(A), dl2(A, DLA), show matrix dl(DLA),

rot matrix dl(DLA, DLR), show matrix dl(DLR).

[a11, a12, a13, a14] [a21, a22, a23, a24] [a31, a32, a33, a34]

No

What is the reason for this? Try to remedy the situation.

�

2.5.4 Application: The Gauss–Seidel Method

We want to solve iteratively the system of linear equations

u + αv + βw = r (2.8)

γu + v + δw = s (2.9)

λu + ρv + w = t (2.10)

in the three unknowns u, v and w. Given some initial approximate solutions u(0), v(0), w(0), we calculate a new
value for u from (2.8) by

u(1) = r − αv(0) − βw(0) (2.11)

This then is used with (2.9) to calculate a new value for v:

v(1) = s − γu(1) − δw(0) (2.12)

Finally, an updated value for w is obtained by using u(1), v(1) in (2.10):

w(1) = t − λu(1) − ρv(1) (2.13)

We have thus completed one cycle of the iteration scheme known as the Gauss–Seidel Method17 (e.g. [10], [17]).
In each updating step, one of the equations (2.11)–(2.13) is used to recompute the variable concerned. The

following observations will be crucial.

• All three updating equations (2.11)–(2.13) take the form

x1 = b1 − a12x2 − a13x3 (2.14)

if before each iteration step the system (2.8)–(2.10) is recast in matrix form as Ax = b where A, b and
x are as shown in Table 2.1.

• In Table 2.1, each of the entries for A, b and x is obtained from the one above it by rotation.18

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

70

Difference Lists

Iterations A b x Updating . . .

1, 4, 7, . . .

⎡
⎣ 1 α β

γ 1 δ

λ ρ 1

⎤
⎦

⎡
⎣ r

s

t

⎤
⎦

⎡
⎣ u

v

w

⎤
⎦ u

2, 5, 8, . . .

⎡
⎣ 1 δ γ

ρ 1 λ

α β 1

⎤
⎦

⎡
⎣ s

t

r

⎤
⎦

⎡
⎣ v

w

u

⎤
⎦ v

3, 6, 9, . . .

⎡
⎣ 1 λ ρ

β 1 α

δ γ 1

⎤
⎦

⎡
⎣ t

r

s

⎤
⎦

⎡
⎣ w

u

v

⎤
⎦ w

Table 2.1: Gauss–Seidel Iterations

The method and the above observations carry over to linear systems of any size. The n–dimensional analogue
of (2.14) is

x1 = b1 − a12x2 − . . . − a1nxn (2.15)

Equation (2.15) is the centrepiece in our formulation of the Gauss–Seidel algorithm and it is very easily
implemented in Prolog. In fact, if A, b and x are respectively represented by [[First|Rest]|OtherRows] ,
[B|OtherBs] and [X|OtherXs] , the code fragment implementing (2.15) will read

...

dot_product(Rest,OtherXs,P),

NewX is B - P,

...

where dot product/3 defines the scalar product of two vectors (not shown here).

Algorithm 2.5.1 shows the pseudocode in the form ready for implementation in Prolog using the present
formulation. (The output Subscripts indicates the permutation which the components of x have been put
through and is the list of subscripts thereof.)

17The special feature of this iteration scheme is that updated values are used as soon as they become available.
18By observing the iteration numbers, row three is found to be ‘above’ row one.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

71

Difference Lists

Algorithm 2.5.1: Gauss-Seidel(A,b,x, s, i)

comment: A is the n×n coefficient matrix with unit diagonals.
b is the n–vector of r.h.s. constants.
x is the n–vector of guessed solutions.
s is the list of subscripts of the components of x.
i is the required number of iterations.

Subscripts ← s
Iterations ← i

while Iterations �= 0

do

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Update (the first entry of) x by (2.15)
A ← RotateMatrix(A)
b ← RotateList(b)
x ← RotateList(x)
Subscripts ← RotateList(Subscripts)
Iterations ← Iterations − 1

output (x, Subscripts)

The core predicate in our implementation is g seidel/2 with arguments in/4 and out/4 . It is defined in
(P-2.29) and implements all but the last action specified inside the while loop in Algorithm 2.5.1.

Prolog Code P-2.29: Definition of g seidel/2

1 g_seidel(in([[First|Rest]|OtherRows],

2 [B|OtherBs],[_|OtherXs],[S|OtherSs]),

3 out(NewAs,NewBs,NewXs,NewSs)) :-

4 dot_product(Rest,OtherXs,P),

5 NewX is B - P,

6 rot_matrix([[First|Rest]|OtherRows],NewAs),

7 append(OtherBs,[B],NewBs),

8 append(OtherXs,[NewX],NewXs),

9 append(OtherSs,[S],NewSs).

g seidel/2 is used by g seidel/7 , the top level predicate defined in (P-2.30), to complete the requisite number
of iterations.

Prolog Code P-2.30: Definition of g seidel/7

1 g_seidel(_,_,Xs,Ss,0,Xs,Ss).

2 g_seidel(As,Bs,Xs,Ss,I,FinalXs,FinalSs) :-

3 g_seidel(in(As,Bs,Xs,Ss),out(NewAs,NewBs,NewXs,NewSs)),

4 NewI is I - 1, !,

5 g_seidel(NewAs,NewBs,NewXs,NewSs,NewI,FinalXs,FinalSs).

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

72

Difference Lists

Example 2.1.19 We want to solve the system Ax = b where

A =

⎡
⎢⎢⎣

1 −0.25 −0.25 0
−0.25 1 0 −0.25
−0.25 0 1 −0.25

0 −0.25 −0.25 1

⎤
⎥⎥⎦ ,b =

⎡
⎢⎢⎣

50
50
25
25

⎤
⎥⎥⎦ .

The above system is defined by the Prolog facts

a([[1, -0.25, -0.25, 0],

[-0.25, 1, 0, -0.25],

[-0.25, 0, 1, -0.25],

[0, -0.25, -0.25, 1]]).

and

b([50, 50, 25, 25]).

The initial approximate solution x
(0)
1 = . . . = x

(0)
4 = 100 is defined in Prolog by

x0([100, 100, 100, 100]). s([1, 2, 3, 4]).

The exact solution, x1 = x2 = 87.5, x3 = x4 = 62.5, is obtained after 50 iterations thus

19Source: [10].

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

Prolog Techniques

73

Difference Lists

?- a(A), b(B), x0(X), s(S), g seidel(A,B,X,S,50,NewX,NewS).

A = [[1, -0.25, -0.25, 0], [-0.25, 1, 0, -0.25],

[-0.25, 0, 1, -0.25], [0, -0.25, -0.25, 1]]

B = [50, 50, 25, 25]

X = [100, 100, 100, 100]

S = [1, 2, 3, 4]

NewX = [62.5, 62.5, 87.5, 87.5]

NewS = [3, 4, 1, 2]

�

Exercise 2.15. Re-implement Gauss–Seidel by using difference lists and compare the performances of the
implementations. You should use the predicates dl/2 (defined by (P-2.19) in Sect. 2.5.1) and dl2/2 and
rot matrix dl/2 (defined respectively by (P-2.26) and (P-2.28) in Sect. 2.5.3).

�

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

74

Difference Lists

LIGS University
based in Hawaii, USA

▶▶ enroll by October 31st, 2014 and

▶▶ save up to 11% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://bookboon.com/
http://bookboon.com/count/advert/ff2a784e-44d0-4687-80af-a3bc00b4ceb5

